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Small clusters of rare-gas atoms are ideal test cases for studying how quantum delocalization affects both the
thermodynamics and the structure of molecular scale systems. In this paper, we use a variational quantum
hydrodynamic approach to examine the structure and dynamics of (Ne)n clusters, withn up to 100 atoms, at
both T ) 0 K and for temperatures spanning the solid-to-liquid transition in bulk Ne. Finite temperature
contributions are introduced to the grand potential in the form of an “entropy” potential. One surprising
result is the prediction of a negative heat capacity for very small clusters that we attribute to the nonadditive
nature of the total free-energy for very small systems.

I. Introduction

Rare-gas clusters approximated by the simple Lennard-Jones
(LJ) pairwise potential are ideal test cases for many-body
simulations,1-3 providing a useful benchmark for new methods.
In addition, rare-gas clusters are often used to probe the
transition from microscopic to macroscopic properties in atomic
systems. This regime has many unique properties4 and has been
studied with a wide variety of theoretical and experimental
techniques.5-8

In many-body systems, quantum mechanical effects become
important when the de Broglie wavelength of a given atom
becomes comparable to the characteristic interatomic interaction
length (σ). If we define a characteristic temperature asT* )
ε/kB in terms of the well-depth,ε, one arrives at the de Boer
ratio.9

In the strictly classical limit,Λ ) 0 whereas systems with
Λ > 0.3 should be considered as strongly quantum mechanical.
For example, the de Boer ratio for Ar clustersΛAr ≈ 0.03. As
such, quantum effects in Ar clusters and liquids play an
insignificant role. However, for Ne,ΛNe ≈ 0.1, and quantum
mechanical effects may be important at low temperatures.

In this paper, we extend the quantum hydrodynamic method
we recently developed10 to study the nature of quantum effects
for atomic cluster systems at finite temperature through the
entropic functional given by Mermin.11 Our approach assumes
that the configurational densityn(r1, ..., rN) can be represented
with a superposition of statistical approximates,p(r1, ...,rN, cm).
The algorithm then uses a Bayesian analysis to determine the
best statistical approximates given a statistical sampling of the
density. It then uses a grid-free hydrodynamic adaptive approach
to relax sample points that make up a statistical sampling of
the quantum density to the ground-state equilibrium density.

This methodology is similar and complementary to path
integral (PI) methods. This is perhaps best seen by comparing
the ring polymers of PI-based methods12 and “particles”

constituting the density of the de Broglie-Bohm procedure
outlined herein. The paths in PI methods trace out a path in
imaginary time with identical starting and ending points. This
gives a collection of ring “atoms” corresponding to each actual
atom. In our description, we have a collection of de Broglie-
Bohm particles distributed around some initial position with
some initial density that constitutes the density at all times, or
steps.

In both methods, a collection of particles is propagated with
classical-like equations of motion with some interparticle force
that is quantum in nature. In PI methods the uncertainty is
maintained by spring forces, usually a result of some harmonic
approximation. The total path, and hence the number of pseudo
particles that must be propagated, is related to the kinetic energy.
In a de Broglie-Bohm based method, the uncertainty is
maintained by the quantum force that is rigorously derived from
the kinetic term in the Hamiltonian. The complementarity arises
because at low temperatures the number of particles necessary
for PI-based approaches drastically increases. This particular
limitation does not exist for the de Broglie-Bohm based
approach we have developed.

In what follows, we present a brief overview of the grid-free
adaptive hydrodynamic approach for computing the quantum
ground-state density for a system ofN nuclei introduced earlier,
and then we show how it can be extended to finite temperature.
We also give a review of the Bayesian analysis used to deduce
the best set ofm statistical approximates from a statistical
sampling of the density. We then show the quantum hydrody-
namical scheme used to adapt the sample points toward a
minimal energy configuration. We will then present results on
clusters of Ne of up to 37 atoms (N ) 37) for temperatures
ranging from 0 to 30 K, which spans the solid-to-liquid transition
for bulk Ne (Tm ) 24.56 K andTb ) 27.07 K). In the present
work we will demonstrate that quantum effects can indeed be
captured with our hydrodynamic method at finite temperature
and that quantum effects lead to some thermodynamic behavior
for small, symmetric clusters.

II. Theory

A. Zero-Temperature Theory. The Euler-Lagrange equa-
tion for the motion of our particles is derived with the help of
the hydrodynamic description of quantum mechanics. We begin
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by specifying the full many-body Hamiltonian, and we will
follow along similarly to density functional theory (DFT).13 The
potential corresponds to the nuclear motion of a collection of
atoms with pairwise interaction potentials.

where the first term is the sum of the kinetic energies of the
individual atoms, and the second is the sum of the potential
energy contributions. If we denote withr i the vector location
of atom i with ni the corresponding atom’s density and ifr )
(r1, r2, ..., rN), then we will assume that the arbitraryN-body
trial density is separable and is given by eq 3.

The energy functional corresponding to this density and
Hamiltonian is given by eq 4.

The kinetic energy operator is separable because we have
assumed distinguishability among the constituent atoms. There-
fore, the kinetic energy term is the sum of the individual kinetic
energy functionals.

As in electronic structure DFT, evaluating the kinetic energy
functionals is problematic because evaluating the quantum
kinetic energy is a nonlocal operator and the density is a local
function.13

If instead we write the quantum wave function in polar
form, as in the hydrodynamic formulation of quantum mecha-
nics14-16 and also in the time-dependent DFT formulation
(eq 6),17,18

wheren(r ) is given by eq 3, then we can arrive at a stationary
condition that, if∇b φ ) 0, we get eq 719

at all points in space. The constant is the energy of the system.
We note here the similarity of the second term in the previous
equation with the quantum force from diffusion Monte Carlo
(∇bψ/ψ). This term is also known as the quantum potential in
the de Broglie-Bohm formulation. By inspection, then, we can
define our kinetic energy functional as eq 8.

Integrating by parts and takingn(i) f 0 at (∞ produces
the familiar von Weizsacker kinetic energy functional20

(eq 9).

Thus, the total energy functional is given in terms of the single
particle densities.

Taking the variation ofE[n] with respect to the single-particle
densities with the constraint that∑i ∫ni(r i) dr i ) N, eq 11

leads to the Euler-Lagrange equation shown in eq 12.

When satisfied,µ is the vibrational ground-state energy, and
the ni(r i) terms are the probability densities of the individual
nuclei. This leads to an effective mean-field potential for each
atom of the form shown in eq 13.

Here,Q(r) is the quantum potential,Ve(r i) is an external potential
that corresponds to any external driving field (Ve ) 0 in the
present study), andVp(r i, r j) is the pairwise interatomic
interaction potential.

B. Finite Temperature. For a system at finite temperature
under the conditions of a grand ensemble,Z(T, V, µ) )
Tr{e-â(H-µN)}, an equilibrium state density matrix will minimize
Ω, the grand potential. This is given by eq 14,

whereH is the Hamiltonian,N is the number operator, andµ is
the chemical potential. Nearly 40 years ago, Mermin11 showed
that by writing Ω as a functional of an arbitrary trial density
matrix (eq 15)

δΩ ) 0 only if the correct density matrix is used. Thus, for
any trial density matrixF̂T * F̂, thenΩ[F̂T] g Ω[F̂]. Mermin
also shows that there is a unique density associated with the
equilibrium density matrix,n(r ) ) Tr{F̂|ψ(r )|2}. This implies
that one can write the grand potential as a functional of the
density (eq 16)

where our free-energy functionalF[n] is given by eq 17.

Here we have made the substitution ofS[n(r )] for the entropic
term. TheTW functional is the Weizsacker functional that, along

H ) -∑
i)1

N 1
2mi

∇i
2 + ∑

i*j
V(ij ) (2)

n(r ) ) ∏
i

ni(r i) (3)

E[n] ) T[n] + ∑
i*j

∫∫ ni(r i)nj(r j)V(ij ) dr i dr j (4)

T[n(1...N)] ) ∑
i)1

N

Ti[ni(r i)] (5)

Ψ(r ) ) xn(r )eiφ(r ) (6)

V(1...N) - ∑
i

1

2m

1

xni(r i)
∇i

2xni(r i) ) const (7)

T[n(r i)] ) - 1
2m∫ xni(r i)∇i

2 xni(r i) dr i (8)

TW[n(r i)] ) + 1
8m∫ 1

ni(r i)
∇bini(r i) ‚ ∇bi ni(r i) dr i (9)

E[n] ) ∑
i)1

N

TW[ni(r i)] + ∑
i*j

∫∫ ni(r i)ni(r j)V(ij ) dr i dr j (10)

δ{∑
i)1

N

(TW[ni(r i)] + ∑
j*i

∫∫ ni(r i)nj(r j)V(ij ) dr i dr j -

µ(∫ ni(r i) dr i - 1))} ) 0 (11)

δTW[ni(r i)]

δni(r i)
+ ∑

j*i
∫ V(ij )nj(r j) dr j - µ ) 0 (12)

Vi
e ) Q(r i) + Ve(r i) + ∑

j)1

N

Vp(r i,r j) (13)

Ω ) - 1
â

ln(Tr{e-â(H-µN)}) (14)

Ω[F̂T] ) Tr{F̂T(K + V - µN + 1
â

ln F̂T)} (15)

Ω[n(r )] ) F[n(r )] - µ ∫ n(r ) dr (16)

F[n(r )] ) Tr{F̂[n(r )] (K + V + 1
â

ln F̂[n(r )])} )

TW[n(r )] + V[n(r )] + 1
â

S[n(r )] (17)
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with the potential functional, is identical to our previous work10

as well as section IIA. We have excluded exchange and
correlation terms because we have assumed noninteracting
particles. The inverse temperature (â) is a Lagrange multiplier
used in the determination of the ground-state density. This is
similar to the chemical potential used previously in the
determination of the ground-state atT ) 0. The minimum of
the Ω functional will correspond to the atomic density profile
of the system at a given temperature. Note that the free-energy
functional, F[n], contains the kinetic energy and external
potential operators as well as an entropy/temperature term, so
that now the stationary equilibrium state will now be an
energetic compromise between the quantum and the entropic
potentials, both of which tend to destabilize the clusters, and a
mean-field interaction potential that tends to stabilize the
clusters. The net effect is that as the cluster temperature increases
the clusters will be increasingly unstable and undergo transitions
from ordered to disordered states.

The thermodynamic justification for the form of the entropic
functional defined by Mermin can be seen from the form of
the entropy in Boltzmann’s eulogistic equation (eq 18);

whereΩmc is the microcanonical density of states. Because we
can writeΩmc in terms of the density matrix in the von Neumann
definition of entropy, we can write the above equation as
eq 19.

This is also sometimes called the differential entropy. The
entropic functional takes into account the contribution from
temperature-entropy work into our energy functional.

We can minimizeΩ to obtain the chemical potential (eq 20).

Again, Q is the quantum potential derived from the functional
derivative of the Weizsacker term,Q ) δT[n]/δn, and in a
similar manner,Vext is simply the mean-field potential of a given
atom in terms of all the other atoms. Now all that remains is to
calculate this iteratively, as in our previous work,10 with a
temperature correction related toS[n(r )].

We assume that the entropic contribution is additive and can
be derived using the von Neumann entropy (eq 21);

where the sum is over individual atoms. Taking the functional
derivative with respect to the density, needed in the equations
of motion of the particles, we define an “entropic force” as
eq 22.

To test our assumption and verify its range of applicability,
we consider a simple harmonic system with a normalized
Gaussian density function (eq 23).

As such, the free-energy (withp ) 1) is given by eq 24.

The first two terms are simply the average kinetic and potential
energies. The last term is temperature dependent and arises from
the entropy contribution. Minimizing〈F〉 with respect to〈x2〉
yields an optimal width parameter given by eq 25.

For comparison, the exact expression for the width of a harmonic
oscillator at finite temperature is21 given by eq 26;

whereΘv ) pω/kB is the vibrational temperature. In Figure 1
we compare the Mermin functional versus the exact result for
a system withp/mω ) 1. Clearly, the delocalization obtained
using the Mermin functional approaches the exact result
asymptotically at high temperatures. It also agrees perfectly at
T ) 0. However, for intermediate temperatures,T j 2ΘV,
〈x2〉approx> 〈x2〉exact. Consequently, we anticipate that the Mermin
approximation to the entropy functional will systematically
overestimate quantum delocalization effects forT < Θv. This
indicates that a corrected form for the entropic potential is
necessary.

1. Computational Approach: Mixture Model.To utilize the
hydrodynamic description, one needs a quantitative description
of the density. This will be done directly from an ensemble of
points sampled from the initial quantum density in the following
way. To begin, the single-particle probability distribution
functions (PDF) can be represented by a mixture model22,23

by summing a finite numberM of density approximates
by eq 27;

wherep(r , cm) is the probability that a randomly chosen member
of the ensemble has the configurationr and is a variant of the
mth approximate designated bycm. These approximates may
be Gaussians or any other integrable multidimensional function
that can be parametrized by its moments. For Gaussian clusters,
we have a weightp(cm), a mean position vectorµm, and a
covariance matrixCm.

By definition, each joint probability in eq 27 is related to a
pair of conditional probabilities according to the relation shown
in eq 28.

The forward conditional probabilityp(r |cm) refers to the
probability that a randomly chosen variant ofcm has the
configurationr , and the posterior probabilityp(cm|r ) refers to
the probability that the configuration pointr is a variant of the
approximatecm. Note thatn(r) andp(cm) are the quantum density
and weight of themth approximate, respectively.

As shown in our previous works,10,24 this formulation
can be used to define a multidimensional quantum density
with user defined amounts of correlation between the
particles. Briefly, we outline our procedure as follows.

S) kB ln(Ωmc) (18)

S) -kBTr{F̂[n(r )] ln(F̂[n(r )])} (19)

µ ) 1
â

δS[n]

δn(r )
+ Q(r ) + Vext(r ) (20)

S[n(r )] )
1
â ∑

i
∫ ni(r i) ln(ni(r i)) dr i ) ∑

i
S[n(i)] (21)

δS[n(r )]
δni

) 1
â

(ln(ni(r i)) + 1) (22)

n(x) ) x 1

2π〈x2〉
e-x2/2〈x2〉 (23)

〈F〉 ) 1

8m〈x2〉
+ mω2

2
〈x2〉 - 1

2â
(ln(2π〈x2〉) + 1) (24)

〈x2〉opt )
kBT

2mω2
(1 + x1 + (pω/kBT)2) (25)

〈x2〉exact)
p

2mω
coth(Θv

2T) (26)

n(r ) ) ∑
m

M

p(r , cm) (27)

p(r , cm) ) p(cm)p(r |cm) ) n(r )p(cm|r ) (28)
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With a Gaussian model representing the full 3N dimensional
system,

where the covariance matrix (C), eq 29 can be used to eliminate
(or maintain) coupling between various degrees of freedom. We
note that for the present work the elements ofC, which provide
coupling between atoms or degrees of freedom, are set to zero.
This means that correlations are only taken into account within
each atom.

One must determine the Gaussian parametersp(cm), µm, and
Cm, that define the density. This is facilitated by using an
iterative expectation maximization (EM) algorithm. In each case,
these are readily approximated by summing over an ensemble
of points{rn} sampled from then(r ) or PDF. For instance, the
mean positions are approximated with eq 30.

The updated Gaussian parameters are then used to update
the posterior termsp(cm|rn) for eachrn sample point by inserting
this back into eq 29 and using Bayes’ equation (eq 31).

This procedure progressively solves for the best set of param-
eters given a distribution of sample points.

The expectation maximization algorithm described above
allows us to generate an approximate analytical functional form
for the single-particle density via statistical sampling over an
ensemble of points. The next step is to adjust the single-particle
densities themselves to produce a lower total energy. We do
this by deriving the quantum hydrodynamic equations of
motion for the sample points,r in, where i labels a given
atom and n labels a given sample point associated with
densityni(r ).

2. Computational Approach: Equations of Motion for the
Sample Points.The quantum Hamilton-Jacobi equation
generates the equations of motion for the ray-lines of a time-
dependent solution to the Schro¨dinger equation.25-28 This
allows convergence to the ground-state by relaxing along an
action field determined for each atom. This gives a set of
time-dependent self-consistent field equations whereby the
motion of atom i is determined by the average potential

interaction between atomi and the rest of the atoms in the
system.

Taking∇bS ) p as a momentum of a particle, the equations of
motion along a given ray-line or sample particler in(t) of the
quantum wave function are given by eq 33;

whereQ[n(i)] is the Bohmian quantum potential specified by
the last term in eq 32. Stationary solutions of the time-dependent
Schrödinger equation are obtained whenevermi r1in ) 0. Con-
sequently, we reach the ground-state by relaxing the sample
points in a direction along the energy gradient (eq 34),

keepingn(r j) fixed. This generates a new statistical sampling,
which we then use to determine a new set of approximates,
and the process is repeated.

The algorithm can be summarized by the following steps:
(1) For each atom, generate and sample a normalized trial
densityni(r i). (2) Using the EM routines and the given sample
of points, compute the coefficients for the density approximates.
(3) Compute the forces on each point using eq 32 and advance
each point along the energy gradient for one “time” step, either
discarding or dampening the velocity of each point. This
generates a new sample of points describing the single-particle
density for each atom. The new distribution should have a lower
total energy because we moved the sample points in the direction
toward lower energy.

By iterating through these last two steps, we rapidly converge
toward the global quantum energy minimum of the system.

III. Results

A. Zero-Temperature Results. In all the calculations
presented here, we used 100 statistical points to represent the
density of each atom, and we propagated the SCF equations
described above until the energy and the density were suf-
ficiently converged. To reach convergence, this typically
required a few hundred thousand iterations. The LJ parameters
used for the Ne atoms areε ) 0.3059 kJ/mol andσ ) 2.79
Å.29 The initial centers of the Gaussian approximates corre-
spond to the position of the global energy minima for each
clusters with initial widths taken from a harmonic oscillator
approximation.

The primary motivation for continuing the study of these
clusters at zero-temperature is the desire to be able to accurately
simulate bulk systems. In our previous work10 we were limited
to systems with less than 20 atoms. Subsequent improvement
of our algorithms have allowed us to substantially advance past
this limit. Furthermore, it is recognized that roughly 110 atoms
per unit cell are required to reasonably approximate the bulk

Figure 1. 〈x2〉 vs T, comparing the approximate entropy functional of
eq 21 (---) to the exact (-) value for a harmonic system at finite
temperature.

p(r |cm) ) x||C-1||
(2π)Nd

e(rd-µm,d)Cm
-1(rd-µm,d) (29)

µm ≈ 1
Np(cm) ∑

n

N

rnp(cm|rn) (30)

p(cm|rn) )
p(cm)p(rn|cm)

∑
m

p(cm)p(rn|cm)
(31)

Ṡi(r ) +
| ∇bi S|2

2mi

+ ∑
j*i

∫ V(ij )nj(r ) dr -

1

2mi

1

xni(r )
∇i

2xni(r ) +
1

â
ni(r ) ln(ni(r )) ) 0 (32)

mir1in )

- ∑
j*i

∫ ( ∇biV(ij ))n(r j) dr j - ∇biQ[n(r i)] + ∇bi

δS[n(i)]

δni

(33)

∇biE )

- ∑
j*i

∫ (∇biV(ij ))nj(r j) dr j - ∇biQ[ni(r i)] + ∇bi

δS[n(i)]

δni

(34)

10348 J. Phys. Chem. A, Vol. 111, No. 41, 2007 Derrickson and Bittner



behavior of large cluster systems.30 Even so, our current
computational resources limited us to clusters with up to 85
atoms atT ) 0 K and roughly half this at higher temperatures.

OurT ) 0 K results are summarized in Figure 2, which shows
the various contributions to the total energy. First, we note that
the contribution from the quantum potential (average kinetic
energy) increases monotonically with system size. Moreover,
the total energy〈E〉 decreases monotonically. This is to be
expected because the larger clusters have increasingly more
nearest-neighbor interactions as the size of the system increases.

In Figure 2 we also compare the present results to a similar
semiclassical study by Calvo et al.6 In their results the zero-
point energy of the static structure of the global minimum was
calculated and then added in an ad hoc fashion to the pair-
potential interaction. Generally, our results lie somewhat lower
in total energy than the semiclassical estimates but above the
classical global energy minimum for each cluster. We do note,
however, that the inclusion of the quantum potential alters the
total energy surface. Consequently, in some cases, the system
could relax to a different minimum or in a superposition of
close-lying minima due to tunneling. The clustering model can
handle this situation through the inclusion of multiple Gaussian
approximates for each atom. However, in each case examined
here, we did not observe serious deviations or tunneling between
nearly degenerate structures.

However, it is possible that the inclusion of quantum
delocalization can influence the energetic ordering of nearly
equivalent structures. Calvo et al. also investigated changes in
ground-state structure as a result of quantum delocalization.
They did this using a basin-hopping Monte Carlo optimization
algorithm to explore the energy landscape of small Ne clusters
with less than 100 atoms. In this study the zero-point energy
contributions were again approximated in an ad hoc fashion
similar to that shown in Figure 2. This can be summarized with
the following procedure: An initial Monte Carlo search over
the potential energy hypersurface is performed to determine a
test configuration. The zero-point energy of this test configu-
ration is determined using the static atomic positions. The
calculated zero-point energy is then added to the classical
potential energy, and this sum is used for the Metropolis
acceptance criteria. This process is repeated until the lowest
energy configuration is determined, now including both the pair-
potential and the zero-point energy.

In our study, as well as that from ref 6, the starting
configurations were based upon the global classical minimum
on the potential energy hypersurface of the cluster. In Calvo et
al.’s semiclassical results, quantum effects produced different
global minimum for 35 out of 99 cases for Nen in the range of

n e 100. For example, the 17 atom cluster has three nearly
equivalent minima (17A, 17B, and 17C) with energiesEC <
EB < EA separated by substantial potential barriers; likewise,n
) 27 andn ) 28 each have two energetically similar minima.
The energies (from ref 6) of these are given in Table 1.
Remarkably, our results show a different ordering of the energies
of these structures compared to the semiclassical results. The
difference between the two results is consistent with the general
trend shown in Figure 2 and corresponds to the different levels
of theory used in each study. In the semiclassical approach, zero-
point contributions are estimated from the curvature of the
potential, after energy “relaxation” on the potential energy
hypersurface. However, in our approach the quantum delocal-
ization self-consistently alters the 3N-dimensional total energy
hypersurface being sampled.

B. Finite Temperature Results. The thermodynamics of
small molecular scale systems is of considerable interest because
what are typically extensive variables (e.g., total energy, entropy,
etc.) that scale monotonically with system size can exhibit
anomalous behavior as the system size becomes small. Add to
this the influences of quantum delocalization, and one anticipates
the predicted thermodynamics of these system to exhibit
behavior quite different from the bulk or even from a purely
classical prediction.

One attractive way to introduce quantum corrections into an
otherwise classical molecular dynamics or Monte Carlo simula-
tion is through the use of an effective “quantum potential”.
Typically, such effective potentials are expansions of the
quantum partition function in powers ofp. The Feynman-Hibbs
potential is derived by characterizing a quantum particle with a
Gaussian that has a width equal to the thermal de Broglie length
centered about the particle and accounts for the spread in density
expected for quantum particles. Under these assumptions the
partition function can be simplified, and with a Gaussian density
the pair-potential term would be evaluated with eq 35

with some reduced mass,µ. The effective potential can then be
found by expanding aboutr and truncating at some convenient
order. Calvo et al.6 performed similar calculations using eq 36

in a very comprehensive survey of how quantum delocalization
affects the structure and energetics of rare-gas clusters, and as
such provides a highly useful point of comparison for our
approach. We do note that these expansions assumeλ to be
small (compared to the local variation in the potential), as per
the semiclassical WKB criteria. Consequently, for lower tem-
peratures and higher degrees of quantum delocalization, such
effective quantum corrections are not applicable.

Figure 2. Various energetic contributions for quantum and classical
Ne clusters vs cluster size,N. Key: 〈cl〉 ) classical global potential
minimum energy,〈cl+qc〉 ) zero-point energy corrections from ref 6,
〈E〉 ) total energy,〈Q〉 ) quantum kinetic energy (from quantum
potential).

TABLE 1: Ground State Vibrational Energies for Nen
Clusters for Our Results Compared to the Results Tabulated
by Calvo et al. in Ref 6

cluster order energy (from ref 6) order this work

17C (1) -11.0853 (2) -16.6336
17B (2) -11.0814 (3) -16.3188
17A (3) -11.0633 (1) -16.6699
27B (1) -21.5483 (2) -27.6994
27A (2) -21.5099 (1) -28.2823
28B (1) -22.5892 (2) -28.7459
28A (2) -22.5496 (1) -29.3524

V(r ij) ) ( 2µ
πâp2)3/2∫ dRV(|r + R|)e-2µ/âp2R2

(35)

Veff(r) ) V(r) + p2â
24m

V′′(r) (36)
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Here we focus on three clusters (Ne13, Ne17, and Ne37) over
a temperature range spanning the solid-to-liquid transition for
bulk Ne. In the figures, which display the thermodynamic data,
the temperature is given in reduced units, which is the
temperature in Kelvin multiplied by Boltzmann’s constant and
divided by the well depth of the LJ potential,T′ ) TkB/ε. Figure
3 shows the total free-energy (scaled to a commonT ) 0 K
origin) versus temperature for the three clusters. Figure 4 shows
the various contributions to the total free-energy for the 13 atom
cluster with similar behavior for the other clusters. First, the
contribution from the quantum potential increases asT increases,
as it should. The averaged quantum potential is simply the
average quantum kinetic energy and, as such, is approximately
inversely proportional to the de Broglie wavelength squared,
〈Q〉 ∝ λ-2. Hence,〈Q〉 increases as the system becomes more
localized, corresponding to an increasingly shorter thermal de
Broglie wavelength asT increases.

At higher temperatures, though, the quantum effects will be
washed out as the de Broglie wavelength goes to zero. So, we
expect that these factors will only be apparent at lower
temperatures. The de Broglie wavelength decreases because the
entropic potential causes an increase in the effective well depth
that the atom feels with increasingT. As this happens, the
cohesive forces increase in response to the decreased delocal-
ization. This is a counterintuitive result because the cohesive
forces are expected to decrease at higher temperatures. This
results from the ability of atomic clusters to preferentially store
energy in the internal interaction energy rather than kinetic. This
aspect is discussed later.

It is useful to compare the results we have obtained with the
analytical results obtained using the Debye model, which is
known to have the correct low temperature behavior for the
heat capacity in the bulk material. The Debye model has a single
adjustable parameter, the Debye temperature, defined by eq 37;

whereN/V ) F is the bulk density, andcs is the speed of sound
in the medium. From this we can derive the internal energy as
eq 38.

In general,TD is determined by fitting the model to experimental
thermodynamic data. For bulk Ne,TD ) 75 K.

Figure 5 compares the internal energy from our results to
the Debye model, with the Debye energy shifted so that it
corresponds atT ) 0 K with our results. By comparing the
curves it is evident our results for the 17 and 37 atom systems
will give similar Debye temperatures to the bulk limit. The
melting region can be identified as the nonlinear regions of the
internal energy curves. In all three clusters, similar melting
regions are observed for both approaches. It may seem remark-
able that the Debye model is still useful given the fact that these
clusters are far from the bulk limit. However, the Debye model
was constructed to account for both the high- and low-
temperature caloric curves in condensed phase systems, and
there is no fundamental problem with it as an approximation in
this case.

Closer inspection of the internal energy curve for Ne13

indicates that, for temperatures 0< T e 0.2T′, the internal
energy decreases to some extent. This corresponds to a negative

heat capacity. Even given a computational error estimate of(0.1
kJ/mol in the internal energy, the dip is clearly present in our
results. This is not entirely unreasonable or unprecedented as
several recent studies have predicted negative heat capacities
for atomic clusters;4-6 however, in ref 6 this was dismissed as
an unphysical result. In addition, negative heat capacities have
also been observed recently for sodium clusters of 147 atoms.31

Schmidt et al.31 explain this for small atomic systems as a purely
microscopic phenomenon. That is, for larger systems at a phase
transition, energy is added as potential energy rather than kinetic
energy so that the temperature remains constant over the course
of the transition. For molecular scale atomic systems, on the
other hand, it can be entropically favorable to avoid a partially
melted state so that some energy is actually transferred from
kinetic to potential energy, causing a negative heat capacity near
phase transitions. Negative heat capacities are not predicted by
the Debye model, indicating that anharmonic delocalization
effects may be important for describing negative heat capacities.
Another factor is thatN ) 13 and 147 clusters form complete
icosohedral structures in their lowest energy state. These are
called magic number clusters because of the stability of these
highly symmetric forms. Because negative heat capacities have
only been observed and/or predicted for magic number clusters,
this suggests that the negative heat capacity may be related to
the symmetry of these systems.

It is also interesting to note that negative heat capacities have
been predicted in astronomical systems for some time.32 This
had a very simple justification based around a viral analysis
for a 1/r-potential system. This was met with some reluctance
in the physics community, of course, but it has become
established based upon some recent examples.33 In all instances
of negative heat capacity the common factor is that the energy
is not an extensive quantity and the interactions between
subsystems must be taken into account. In the clusters we are
examining, as the temperature is raised the atoms adjust
themselves to store energy in the pair-potential interaction
between atoms rather than increase the kinetic energy. This
process can result in a negative heat capacity.

On the basis of the above discussions, we can say the
thermodynamics of these clusters is influenced greatly by their
relative ability to store energy preferentially as potential energy.
This aspect of these systems can be studied by introducing a
virial-like parameter consisting of the ratio of the quantum
potential with the total internal energy,〈Q〉〈U〉. This parameter

TD )
hcs

2kB
(6N
πV)-3

(37)

U ) 9NkBT(T/TD)3 ∫0

TD/T x3

ex - 1
dx (38)

Figure 3. The free-energy of the different clusters vsT. Error bars
indicate numerical/statistical precision of each computed free-energy
value. Note theT ) 0 values are offset to a common origin for
comparison. The energies atT ) 0 K for the three clusters are as
follows: F0

13 ) -11.21 kJ/mol,F0
17 ) -15.216 kJ/mol, andF0

37 )
-39.03 kJ/mol.
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essentially measures the percentage of energy contained in the
kinetic energy. This will be given by the following equation.

The value ofτm should approach 1 as the temperature is raised
because the averaged quantum potential value increases with
temperature, and the averaged potential interaction energy should
remain about constant, although the cluster will dissociate into
a disordered state long before this point is reached. The averaged
quantum potential value is a monotonically increasing function
of the temperature because it is inversely proportional to the
delocalization, or the de Broglie wavelength,〈Q〉 ≈ 1/λ2 ≈ T.
The value ofτm is shown for the three clusters in Figure 6, and
the curves clearly show that the smaller clusters must increase
the amount of kinetic energy at a greater rate with temperature.
Essentially, the different rates of increase forτm are due to the
larger clusters increased ability to store energy in the pair-
potential. This explains the marked decrease in the temperatures
of phase transitions as the size of the clusters drops.

IV. Conclusions

In this work, we have investigated the ground vibrational state
energies at zero-temperature and the low temperature thermo-

dynamics of rare-gas clusters. The method used is a novel
approach we previously developed based upon an “orbital” free
DFT. It also utilizes the Bohm hydrodynamical description of
quantum mechanics similar to time dependent DFT, and an
information theoretical approach is used to determine an optimal
quantum density function. Improvements in the algorithm
allowed the calculation of the ground-state structure at zero-
temperature approaching the size necessary to simulate bulk
systems.

We have also outlined the theoretical development necessary
for the calculation of the ground-state vibrational energy at low
temperatures. This involves the introduction of an “entropic”
potential which resembles the von Nuemann definition of the
entropy. This approach was tested by measuring the thermo-
dynamic behavior for temperatures spanning the quasiphase
transition of atomic clusters under 40 atoms. Results indicate
excellent agreement with previous studies. Good agreement is
also seen with the analytical results from the Debye model,
which is surprisingly accurate even when far from the bulk or
continuum limit.

The zero-temperature results indicate that the level of theory
used in the calculation of quantum effects can influence the
ground-state structures that are calculated. This could have major
implications for some global optimization methods. We also
presented a virial-like parameter to help illustrate the melting
characteristics of these clusters. This melting parameter shows
that the reason for the significantly lower temperatures for phase
transitions in microscopic clusters is their decreased ability to
store energy in the total pair-potential energy. The most striking
aspect of the present results is the negative heat capacity seen
for Ne13. This has only been predicted or observed for so-called
magic number clusters, which implies that it is symmetry related.
In this work, we have shown that our approach is useful for
accurately predicting ground-state energies and thermodynamics
for atomic clusters influenced by quantum delocalization.
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